Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Front Immunol ; 13: 995412, 2022.
Article in English | MEDLINE | ID: covidwho-2043452

ABSTRACT

Anti-COVID antibody therapeutics have been developed but not widely used due to their high cost and escape of neutralization from the emerging variants. Here, we describe the development of VHH-IgA1.1, a nanobody IgA fusion molecule as an inhalable, affordable and less invasive prophylactic and therapeutic treatment against SARS-CoV-2 Omicron variants. VHH-IgA1.1 recognizes a conserved epitope of SARS-CoV-2 spike protein Receptor Binding Domain (RBD) and potently neutralizes major global SARS-CoV-2 variants of concern (VOC) including the Omicron variant and its sub lineages BA.1.1, BA.2 and BA.2.12.1. VHH-IgA1.1 is also much more potent against Omicron variants as compared to an IgG Fc fusion construct, demonstrating the importance of IgA mediated mucosal protection for Omicron infection. Intranasal administration of VHH-IgA1.1 prior to or after challenge conferred significant protection from severe respiratory disease in K18-ACE2 transgenic mice infected with SARS-CoV-2 VOC. More importantly, for cost-effective production, VHH-IgA1.1 produced in Pichia pastoris had comparable potency to mammalian produced antibodies. Our study demonstrates that intranasal administration of affordably produced VHH-IgA fusion protein provides effective mucosal immunity against infection of SARS-CoV-2 including emerging variants.


Subject(s)
COVID-19 , Immunoglobulin A , SARS-CoV-2 , Single-Domain Antibodies , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Viral/pharmacology , Epitopes/chemistry , Humans , Immunoglobulin A/pharmacology , Immunoglobulin G , Mice , Single-Domain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus
2.
J Nanobiotechnology ; 20(1): 411, 2022 Sep 15.
Article in English | MEDLINE | ID: covidwho-2029712

ABSTRACT

The major challenge to controlling the COVID pandemic is the rapid mutation rate of the SARS-CoV-2 virus, leading to the escape of the protection of vaccines and most of the neutralizing antibodies to date. Thus, it is essential to develop neutralizing antibodies with broad-spectrum activity targeting multiple SARS-CoV-2 variants. Here, we report a synthetic nanobody (named C5G2) obtained by phage display and subsequent antibody engineering. C5G2 has a single-digit nanomolar binding affinity to the RBD domain and inhibits its binding to ACE2 with an IC50 of 3.7 nM. Pseudovirus assays indicated that monovalent C5G2 could protect the cells from infection with SARS-CoV-2 wild-type virus and most of the viruses of concern, i.e., Alpha, Beta, Gamma and Omicron variants. Strikingly, C5G2 has the highest potency against Omicron BA.1 among all the variants, with an IC50 of 4.9 ng/mL. The cryo-EM structure of C5G2 in complex with the spike trimer showed that C5G2 binds to RBD mainly through its CDR3 at a conserved region that does not overlap with the ACE2 binding surface. Additionally, C5G2 binds simultaneously to the neighboring NTD domain of the spike trimer through the same CDR3 loop, which may further increase its potency against viral infection. Third, the steric hindrance caused by FR2 of C5G2 could inhibit the binding of ACE2 to RBD as well. Thus, this triple-function nanobody may serve as an effective drug for prophylaxis and therapy against Omicron as well as future variants.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , SARS-CoV-2 , Single-Domain Antibodies , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , COVID-19 , SARS-CoV-2/drug effects , Single-Domain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus
3.
Cell Res ; 32(9): 831-842, 2022 09.
Article in English | MEDLINE | ID: covidwho-1967595

ABSTRACT

SARS-CoV-2 variants with adaptive mutations have continued to emerge, causing fresh waves of infection even amongst vaccinated population. The development of broad-spectrum antivirals is thus urgently needed. We previously developed two hetero-bivalent nanobodies (Nbs), aRBD-2-5 and aRBD-2-7, with potent neutralization activity against the wild-type (WT) Wuhan isolated SARS-CoV-2, by fusing aRBD-2 with aRBD-5 and aRBD-7, respectively. Here, we resolved the crystal structures of these Nbs in complex with the receptor-binding domain (RBD) of the spike protein, and found that aRBD-2 contacts with highly-conserved RBD residues and retains binding to the RBD of the Alpha, Beta, Gamma, Delta, Delta plus, Kappa, Lambda, Omicron BA.1, and BA.2 variants. In contrast, aRBD-5 and aRBD-7 bind to less-conserved RBD epitopes non-overlapping with the epitope of aRBD-2, and do not show apparent binding to the RBD of some variants. However, when fused with aRBD-2, they effectively enhance the overall binding affinity. Consistently, aRBD-2-5-Fc and aRBD-2-7-Fc potently neutralized all of the tested authentic or pseudotyped viruses, including WT, Alpha, Beta, Gamma, Delta, and Omicron BA.1, BA.1.1 and BA.2. Furthermore, aRBD-2-5-Fc provided prophylactic protection against the WT and mouse-adapted SARS-CoV-2 in mice, and conferred protection against the Omicron BA.1 variant in hamsters prophylactically and therapeutically, indicating that aRBD-2-5-Fc could potentially benefit the prevention and treatment of COVID-19 caused by the emerging variants of concern. Our strategy provides new solutions in the development of broad-spectrum therapeutic antibodies for COVID-19.


Subject(s)
COVID-19 , Single-Domain Antibodies , Animals , Antibodies, Neutralizing , Antibodies, Viral/therapeutic use , Epitopes , Mice , Mice, Inbred BALB C , SARS-CoV-2 , Single-Domain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus/genetics
4.
Sci Rep ; 12(1): 4163, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1799572

ABSTRACT

SARS-CoV-2 and its variants have persisted in this ongoing COVID-19 pandemic. While the vaccines have greatly reduced the COVID-19 cases, hospitalizations, and death, about half of the world remain unvaccinated due to various reasons. Furthermore, the duration of the immunity gained from COVID-19 vaccination is still unclear. Therefore, there is a need for innovative prophylactic and treatment measures. In response to this need, we previously reported on the successful computer-aided development of potent VHH-based multispecific antibodies that were characterized in vitro. Here, we evaluated in vivo efficacy and safety of the lead trispecific VHH-Fc, ABS-VIR-001. Importantly, our data showed that ABS-VIR-001 treatment prevented SARS-CoV-2 infection and death when provided as an intranasal prophylaxis in a humanized ACE-2 mouse model. In addition, ABS-VIR-001 post-exposure treatment was shown to greatly reduce viral loads by as much as 50-fold. A detailed panel of metabolic and cellular parameters demonstrated that ABS-VIR-001 treatment was overall comparable to the PBS treatment, indicating a favorable safety profile. Notably, our inhibition studies show that ABS-VIR-001 continued to demonstrate unwavering efficacy against SARS-CoV-2 mutants, associated with key variants including Delta and Omicron, owing to its multiple epitope design. Lastly, we rigorously tested and confirmed the excellent thermostability of ABS-VIR-001 when heated to 45 °C for up to 4 weeks. Taken together, our study suggests that ABS-VIR-001 is an efficacious and durable prophylaxis and post-exposure treatment for COVID-19 with promising safety and manufacturability features for global distribution.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2/physiology , Single-Domain Antibodies/therapeutic use , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antigen-Antibody Reactions/drug effects , Biomarkers/metabolism , COVID-19/virology , Drug Stability , Humans , Immunocompromised Host , Mice , Mice, Transgenic , SARS-CoV-2/isolation & purification , Single-Domain Antibodies/immunology , Single-Domain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus/immunology , Viral Load
5.
Int J Biol Macromol ; 209(Pt A): 1379-1388, 2022 Jun 01.
Article in English | MEDLINE | ID: covidwho-1796724

ABSTRACT

SARS-CoV-2 engages with human cells through the binding of its Spike receptor-binding domain (S-RBD) to the receptor ACE2. Molecular blocking of this engagement represents a proven strategy to treat COVID-19. Here, we report a single-chain antibody (nanobody, DL4) isolated from immunized alpaca with picomolar affinity to RBD. DL4 neutralizes SARS-CoV-2 pseudoviruses with an IC50 of 0.101 µg mL-1 (6.2 nM). A crystal structure of the DL4-RBD complex at 1.75-Å resolution unveils the interaction detail and reveals a direct competition mechanism for DL4's ACE2-blocking and hence neutralizing activity. The structural information allows us to rationally design a mutant with higher potency. Our work adds diversity of neutralizing nanobodies against SARS-CoV-2 and should encourage protein engineering to improve antibody affinities in general.


Subject(s)
SARS-CoV-2 , Single-Domain Antibodies , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , Protein Binding , Protein Engineering , SARS-CoV-2/drug effects , Single-Domain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus/chemistry
6.
Front Immunol ; 13: 865401, 2022.
Article in English | MEDLINE | ID: covidwho-1775686

ABSTRACT

Current COVID-19 vaccines need to take at least one month to complete inoculation and then become effective. Around 51% of the global population is still not fully vaccinated. Instantaneous protection is an unmet need among those who are not fully vaccinated. In addition, breakthrough infections caused by SARS-CoV-2 are widely reported. All these highlight the unmet needing for short-term instantaneous prophylaxis (STIP) in the communities where SARS-CoV-2 is circulating. Previously, we reported nanobodies isolated from an alpaca immunized with the spike protein, exhibiting ultrahigh potency against SARS-CoV-2 and its variants. Herein, we found that Nb22, among our previously reported nanobodies, exhibited ultrapotent neutralization against Delta variant with an IC50 value of 0.41 ng/ml (5.13 pM). Furthermore, the crystal structural analysis revealed that the binding of Nb22 to WH01 and Delta RBDs both effectively blocked the binding of RBD to hACE2. Additionally, intranasal Nb22 exhibited protection against SARS-CoV-2 Delta variant in the post-exposure prophylaxis (PEP) and pre-exposure prophylaxis (PrEP). Of note, intranasal Nb22 also demonstrated high efficacy against SARS-CoV-2 Delta variant in STIP for seven days administered by single dose and exhibited long-lasting retention in the respiratory system for at least one month administered by four doses, providing a strategy of instantaneous short-term prophylaxis against SARS-CoV-2. Thus, ultrahigh potency, long-lasting retention in the respiratory system and stability at room-temperature make the intranasal or inhaled Nb22 to be a potential therapeutic or STIP agent against SARS-CoV-2.


Subject(s)
COVID-19 , Single-Domain Antibodies , Animals , Antibodies, Neutralizing , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Mice , SARS-CoV-2 , Single-Domain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus
7.
EMBO Rep ; 23(4): e54199, 2022 04 05.
Article in English | MEDLINE | ID: covidwho-1732510

ABSTRACT

The ongoing COVID-19 pandemic represents an unprecedented global health crisis. Here, we report the identification of a synthetic nanobody (sybody) pair, Sb#15 and Sb#68, that can bind simultaneously to the SARS-CoV-2 spike RBD and efficiently neutralize pseudotyped and live viruses by interfering with ACE2 interaction. Cryo-EM confirms that Sb#15 and Sb#68 engage two spatially discrete epitopes, influencing rational design of bispecific and tri-bispecific fusion constructs that exhibit up to 100- and 1,000-fold increase in neutralization potency, respectively. Cryo-EM of the sybody-spike complex additionally reveals a novel up-out RBD conformation. While resistant viruses emerge rapidly in the presence of single binders, no escape variants are observed in the presence of the bispecific sybody. The multivalent bispecific constructs further increase the neutralization potency against globally circulating SARS-CoV-2 variants of concern. Our study illustrates the power of multivalency and biparatopic nanobody fusions for the potential development of therapeutic strategies that mitigate the emergence of new SARS-CoV-2 escape mutants.


Subject(s)
COVID-19 Drug Treatment , Single-Domain Antibodies , Antibodies, Neutralizing , Antibodies, Viral/metabolism , Drug Resistance , Humans , Pandemics , Protein Binding , SARS-CoV-2/genetics , Single-Domain Antibodies/genetics , Single-Domain Antibodies/metabolism , Single-Domain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
8.
J Virol ; 96(4): e0162221, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1706888

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can induce mild to life-threatening symptoms. Especially individuals over 60 years of age or with underlying comorbidities, including heart or lung disease and diabetes, or immunocompromised patients are at a higher risk. Fatal multiorgan damage in coronavirus disease 2019 (COVID-19) patients can be attributed to an interleukin-6 (IL-6)-dominated cytokine storm. Consequently, IL-6 receptor (IL-6R) monoclonal antibody treatment for severe COVID-19 cases has been approved for therapy. High concentrations of soluble IL-6R (sIL-6R) were found in COVID-19 intensive care unit patients, suggesting the involvement of IL-6 trans-signaling in disease pathology. Here, in analogy to bispecific antibodies (bsAbs), we developed the first bispecific IL-6 trans-signaling inhibitor, c19s130Fc, which blocks viral infection and IL-6 trans-signaling. c19s130Fc is a designer protein of the IL-6 trans-signaling inhibitor cs130 fused to a single-domain nanobody directed against the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. c19s130Fc binds with high affinity to IL-6:sIL-6R complexes as well as the spike protein of SARS-CoV-2, as shown by surface plasmon resonance. Using cell-based assays, we demonstrate that c19s130Fc blocks IL-6 trans-signaling-induced proliferation and STAT3 phosphorylation in Ba/F3-gp130 cells as well as SARS-CoV-2 infection and STAT3 phosphorylation in Vero cells. Taken together, c19s130Fc represents a new class of bispecific inhibitors consisting of a soluble cytokine receptor fused to antiviral nanobodies and principally demonstrates the multifunctionalization of trans-signaling inhibitors. IMPORTANCE The availability of effective SARS-CoV-2 vaccines is a large step forward in managing the pandemic situation. In addition, therapeutic options, e.g., monoclonal antibodies to prevent viral cell entry and anti-inflammatory therapies, including glucocorticoid treatment, are currently developed or in clinical use to treat already infected patients. Here, we report a novel dual-specificity inhibitor to simultaneously target SARS-CoV-2 infection and virus-induced hyperinflammation. This was achieved by fusing an inhibitor of viral cell entry with a molecule blocking IL-6, a key mediator of SARS-CoV-2-induced hyperinflammation. Through this dual action, this molecule may have the potential to efficiently ameliorate symptoms of COVID-19 in infected individuals.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Cytokine Receptor gp130 , Interleukin-6/metabolism , Recombinant Fusion Proteins , Signal Transduction/drug effects , Single-Domain Antibodies , Spike Glycoprotein, Coronavirus/metabolism , Animals , COVID-19/metabolism , Chlorocebus aethiops , Cytokine Receptor gp130/chemistry , Cytokine Receptor gp130/genetics , Humans , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/genetics , Single-Domain Antibodies/pharmacology , Vero Cells
9.
Signal Transduct Target Ther ; 7(1): 44, 2022 02 09.
Article in English | MEDLINE | ID: covidwho-1683982

ABSTRACT

The wide transmission and host adaptation of SARS-CoV-2 have led to the rapid accumulation of mutations, posing significant challenges to the effectiveness of vaccines and therapeutic antibodies. Although several neutralizing antibodies were authorized for emergency clinical use, convalescent patients derived natural antibodies are vulnerable to SARS-CoV-2 Spike mutation. Here, we describe the screen of a panel of SARS-CoV-2 receptor-binding domain (RBD) targeted nanobodies (Nbs) from a synthetic library and the design of a biparatopic Nb, named Nb1-Nb2, with tight affinity and super-wide neutralization breadth against multiple SARS-CoV-2 variants of concern. Deep-mutational scanning experiments identify the potential binding epitopes of the Nbs on the RBD and demonstrate that biparatopic Nb1-Nb2 has a strong escape-resistant feature against more than 60 tested RBD amino acid substitutions. Using pseudovirion-based and trans-complementation SARS-CoV-2 tools, we determine that the Nb1-Nb2 broadly neutralizes multiple SARS-CoV-2 variants at sub-nanomolar levels, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), Lambda (C.37), Kappa (B.1.617.1), and Mu (B.1.621). Furthermore, a heavy-chain antibody is constructed by fusing the human IgG1 Fc to Nb1-Nb2 (designated as Nb1-Nb2-Fc) to improve its neutralization potency, yield, stability, and potential half-life extension. For the new Omicron variant (B.1.1.529) that harbors unprecedented multiple RBD mutations, Nb1-Nb2-Fc keeps a firm affinity (KD < 1.0 × 10-12 M) and strong neutralizing activity (IC50 = 1.46 nM for authentic Omicron virus). Together, we developed a tetravalent biparatopic human heavy-chain antibody with ultrapotent and broad-spectrum SARS-CoV-2 neutralization activity which highlights the potential clinical applications.


Subject(s)
Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , Immunoglobulin Fc Fragments/pharmacology , Recombinant Fusion Proteins/pharmacology , SARS-CoV-2/drug effects , Single-Domain Antibodies/pharmacology , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/genetics , Antibodies, Viral/biosynthesis , Antibodies, Viral/genetics , Antibody Affinity , Enzyme-Linked Immunosorbent Assay , Epitopes/chemistry , Epitopes/immunology , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Humans , Immunoglobulin Fc Fragments/biosynthesis , Immunoglobulin Fc Fragments/genetics , Models, Molecular , Neutralization Tests , Protein Binding/drug effects , Protein Conformation , Protein Interaction Domains and Motifs , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , SARS-CoV-2/growth & development , SARS-CoV-2/immunology , Single-Domain Antibodies/biosynthesis , Single-Domain Antibodies/genetics , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
10.
MAbs ; 14(1): 2002236, 2022.
Article in English | MEDLINE | ID: covidwho-1585298

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an evolving global public health crisis in need of therapeutic options. Passive immunization of monoclonal antibodies (mAbs) represents a promising therapeutic strategy capable of conferring immediate protection from SARS-CoV-2 infection. Herein, we describe the discovery and characterization of neutralizing SARS-CoV-2 IgG and VHH antibodies from four large-scale phage libraries. Each library was constructed synthetically with shuffled complementarity-determining region loops from natural llama and human antibody repertoires. While most candidates targeted the receptor-binding domain of the S1 subunit of SARS-CoV-2 spike protein, we also identified a neutralizing IgG candidate that binds a unique epitope on the N-terminal domain. A select number of antibodies retained binding to SARS-CoV-2 variants Alpha, Beta, Gamma, Kappa and Delta. Overall, our data show that synthetic phage libraries can rapidly yield SARS-CoV-2 S1 antibodies with therapeutically desirable features, including high affinity, unique binding sites, and potent neutralizing activity in vitro, and a capacity to limit disease in vivo.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Cell Surface Display Techniques , Immunoglobulin G/immunology , Peptide Library , SARS-CoV-2/immunology , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/metabolism , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/genetics , Antibodies, Viral/metabolism , Antibody Specificity , Binding Sites, Antibody , COVID-19/metabolism , COVID-19/prevention & control , COVID-19/virology , Chlorocebus aethiops , Disease Models, Animal , Epitopes , Female , Host-Pathogen Interactions , Immunoglobulin G/genetics , Immunoglobulin G/metabolism , Immunoglobulin G/pharmacology , Mesocricetus , SARS-CoV-2/pathogenicity , Single-Domain Antibodies/genetics , Single-Domain Antibodies/metabolism , Single-Domain Antibodies/pharmacology , Vero Cells
11.
Mol Biol Rep ; 49(1): 647-656, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1465893

ABSTRACT

The severe acute respiratory syndrome (SARS-CoV-2), a newly emerging of coronavirus, continues to infect humans in the absence of a viable treatment. Neutralizing antibodies that disrupt the interaction of RBD and ACE2 has been under the spotlight as a way of developing the COVID-19 treatment. Some animals, such as llamas, manufacture heavy-chain antibodies that have a single variable domain (VHH) instead of two variable domains (VH/VL) as opposed to typical antibodies. Nanobodies are antigen-specific, single-domain, changeable segments of camelid heavy chain-only antibodies that are recombinantly produced. These types of antibodies exhibit a wide range of strong physical and chemical properties, like high solubility, and stability. The VHH's high-affinity attachment to the receptor-binding domain (RBD) allowed the neutralization of SARS-CoV-2. To tackle COVID-19, some nanobodies are being developed against SARS-CoV-2, some of which have been recently included in clinical trials. Nanobody therapy may be useful in managing the COVID-19 pandemic as a potent and low-cost treatment. This paper describes the application of nanobodies as a new class of recombinant antibodies in COVID-19 treatment.


Subject(s)
COVID-19 Drug Treatment , Single-Domain Antibodies , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antibodies, Viral/pharmacology , COVID-19/immunology , COVID-19/therapy , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/immunology , Single-Domain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
12.
Nat Commun ; 12(1): 5469, 2021 09 22.
Article in English | MEDLINE | ID: covidwho-1434103

ABSTRACT

SARS-CoV-2 remains a global threat to human health particularly as escape mutants emerge. There is an unmet need for effective treatments against COVID-19 for which neutralizing single domain antibodies (nanobodies) have significant potential. Their small size and stability mean that nanobodies are compatible with respiratory administration. We report four nanobodies (C5, H3, C1, F2) engineered as homotrimers with pmolar affinity for the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Crystal structures show C5 and H3 overlap the ACE2 epitope, whilst C1 and F2 bind to a different epitope. Cryo Electron Microscopy shows C5 binding results in an all down arrangement of the Spike protein. C1, H3 and C5 all neutralize the Victoria strain, and the highly transmissible Alpha (B.1.1.7 first identified in Kent, UK) strain and C1 also neutralizes the Beta (B.1.35, first identified in South Africa). Administration of C5-trimer via the respiratory route showed potent therapeutic efficacy in the Syrian hamster model of COVID-19 and separately, effective prophylaxis. The molecule was similarly potent by intraperitoneal injection.


Subject(s)
Antibodies, Neutralizing/pharmacology , COVID-19 Drug Treatment , Single-Domain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus/metabolism , Administration, Intranasal , Animals , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Cryoelectron Microscopy , Crystallography, X-Ray , Disease Models, Animal , Dose-Response Relationship, Immunologic , Epitopes/chemistry , Epitopes/metabolism , Female , Male , Mesocricetus , Neutralization Tests , SARS-CoV-2/drug effects , Single-Domain Antibodies/administration & dosage , Single-Domain Antibodies/immunology , Single-Domain Antibodies/metabolism , Spike Glycoprotein, Coronavirus/chemistry
13.
Nat Commun ; 12(1): 5506, 2021 09 17.
Article in English | MEDLINE | ID: covidwho-1428815

ABSTRACT

Antibody engineering technologies face increasing demands for speed, reliability and scale. We develop CeVICA, a cell-free nanobody engineering platform that uses ribosome display for in vitro selection of nanobodies from a library of 1011 randomized sequences. We apply CeVICA to engineer nanobodies against the Receptor Binding Domain (RBD) of SARS-CoV-2 spike protein and identify >800 binder families using a computational pipeline based on CDR-directed clustering. Among 38 experimentally-tested families, 30 are true RBD binders and 11 inhibit SARS-CoV-2 pseudotyped virus infection. Affinity maturation and multivalency engineering increase nanobody binding affinity and yield a virus neutralizer with picomolar IC50. Furthermore, the capability of CeVICA for comprehensive binder prediction allows us to validate the fitness of our nanobody library. CeVICA offers an integrated solution for rapid generation of divergent synthetic nanobodies with tunable affinities in vitro and may serve as the basis for automated and highly parallel nanobody engineering.


Subject(s)
Antibodies, Neutralizing/immunology , Protein Engineering , SARS-CoV-2/drug effects , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/pharmacology , Antibodies, Viral , Humans , Protein Binding , Reproducibility of Results , Single-Domain Antibodies/genetics , Spike Glycoprotein, Coronavirus , COVID-19 Drug Treatment
14.
Biomolecules ; 10(12)2020 12 11.
Article in English | MEDLINE | ID: covidwho-1383863

ABSTRACT

Multivalent antibody constructs have a broad range of clinical and biotechnological applications. Nanobodies are especially useful as components for multivalent constructs as they allow increased valency while maintaining a small molecule size. We here describe a novel, rapid method for the generation of bi- and multivalent nanobody constructs with oriented assembly by Cu-free strain promoted azide-alkyne click chemistry (SPAAC). We used sortase A for ligation of click chemistry functional groups site-specifically to the C-terminus of nanobodies before creating C-to-C-terminal nanobody fusions and 4-arm polyethylene glycol (PEG) tetrameric nanobody constructs. We demonstrated the viability of this approach by generating constructs with the SARS-CoV-2 neutralizing nanobody Ty1. We compared the ability of the different constructs to neutralize SARS-CoV-2 pseudotyped virus and infectious virus in neutralization assays. The generated dimers neutralized the virus similarly to a nanobody-Fc fusion variant, while a 4-arm PEG based tetrameric Ty1 construct dramatically enhanced neutralization of SARS-CoV-2, with an IC50 in the low picomolar range.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Single-Domain Antibodies/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/pharmacology , COVID-19/virology , Click Chemistry , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/pharmacology , COVID-19 Drug Treatment
15.
Elife ; 102021 08 02.
Article in English | MEDLINE | ID: covidwho-1377103

ABSTRACT

Combating the COVID-19 pandemic requires potent and low-cost therapeutics. We identified a series of single-domain antibodies (i.e., nanobody), Nanosota-1, from a camelid nanobody phage display library. Structural data showed that Nanosota-1 bound to the oft-hidden receptor-binding domain (RBD) of SARS-CoV-2 spike protein, blocking viral receptor angiotensin-converting enzyme 2 (ACE2). The lead drug candidate possessing an Fc tag (Nanosota-1C-Fc) bound to SARS-CoV-2 RBD ~3000 times more tightly than ACE2 did and inhibited SARS-CoV-2 pseudovirus ~160 times more efficiently than ACE2 did. Administered at a single dose, Nanosota-1C-Fc demonstrated preventive and therapeutic efficacy against live SARS-CoV-2 infection in both hamster and mouse models. Unlike conventional antibodies, Nanosota-1C-Fc was produced at high yields in bacteria and had exceptional thermostability. Pharmacokinetic analysis of Nanosota-1C-Fc documented an excellent in vivo stability and a high tissue bioavailability. As effective and inexpensive drug candidates, Nanosota-1 may contribute to the battle against COVID-19.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Single-Domain Antibodies/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19/metabolism , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Molecular , Pandemics , Protein Binding , Protein Conformation , Receptors, Virus/immunology , Receptors, Virus/metabolism , Single-Domain Antibodies/chemistry , Spike Glycoprotein, Coronavirus/metabolism
16.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Article in English | MEDLINE | ID: covidwho-1203483

ABSTRACT

Neutralizing antibodies are important for immunity against SARS-CoV-2 and as therapeutics for the prevention and treatment of COVID-19. Here, we identified high-affinity nanobodies from alpacas immunized with coronavirus spike and receptor-binding domains (RBD) that disrupted RBD engagement with the human receptor angiotensin-converting enzyme 2 (ACE2) and potently neutralized SARS-CoV-2. Epitope mapping, X-ray crystallography, and cryo-electron microscopy revealed two distinct antigenic sites and showed two neutralizing nanobodies from different epitope classes bound simultaneously to the spike trimer. Nanobody-Fc fusions of the four most potent nanobodies blocked ACE2 engagement with RBD variants present in human populations and potently neutralized both wild-type SARS-CoV-2 and the N501Y D614G variant at concentrations as low as 0.1 nM. Prophylactic administration of either single nanobody-Fc or as mixtures reduced viral loads by up to 104-fold in mice infected with the N501Y D614G SARS-CoV-2 virus. These results suggest a role for nanobody-Fc fusions as prophylactic agents against SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Drug Treatment , COVID-19 , SARS-CoV-2/immunology , Single-Domain Antibodies , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/immunology , Antibodies, Viral/pharmacology , COVID-19/immunology , Camelids, New World , Humans , Mice , Single-Domain Antibodies/immunology , Single-Domain Antibodies/pharmacology
17.
JCI Insight ; 6(5)2021 03 08.
Article in English | MEDLINE | ID: covidwho-1060398

ABSTRACT

The development of prophylactic and therapeutic agents for coronavirus disease 2019 (COVID-19) is a current global health priority. Here, we investigated the presence of cross-neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in dromedary camels that were Middle East respiratory syndrome coronavirus (MERS-CoV) seropositive but MERS-CoV free. The tested 229 dromedaries had anti-MERS-CoV camel antibodies with variable cross-reactivity patterns against SARS-CoV-2 proteins, including the S trimer and M, N, and E proteins. Using SARS-CoV-2 competitive immunofluorescence immunoassays and pseudovirus neutralization assays, we found medium-to-high titers of cross-neutralizing antibodies against SARS-CoV-2 in these animals. Through linear B cell epitope mapping using phage immunoprecipitation sequencing and a SARS-CoV-2 peptide/proteome microarray, we identified a large repertoire of Betacoronavirus cross-reactive antibody specificities in these dromedaries and demonstrated that the SARS-CoV-2-specific VHH antibody repertoire is qualitatively diverse. This analysis revealed not only several SARS-CoV-2 epitopes that are highly immunogenic in humans, including a neutralizing epitope, but also epitopes exclusively targeted by camel antibodies. The identified SARS-CoV-2 cross-neutralizing camel antibodies are not proposed as a potential treatment for COVID-19. Rather, their presence in nonimmunized camels supports the development of SARS-CoV-2 hyperimmune camels, which could be a prominent source of therapeutic agents for the prevention and treatment of COVID-19.


Subject(s)
Antibodies, Neutralizing/immunology , Camelus/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Single-Domain Antibodies/pharmacology , Animals , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/immunology , Betacoronavirus/immunology , COVID-19/immunology , Camelus/virology , Cross Reactions , Epitopes , Female , Humans , Middle East Respiratory Syndrome Coronavirus/immunology , Severe acute respiratory syndrome-related coronavirus/immunology
18.
Mol Biol Rep ; 47(12): 9939-9949, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-969167

ABSTRACT

The outbreak of a novel coronavirus namely SARS-CoV-2, which first emerged from Wuhan, China, has wreaked havoc not only in China but the whole world that now has been engulfed in its wrath. In a short lapse of time, this virus was successful in spreading at a blistering pace throughout the globe, hence raising the flag of pandemic status. The mounting number of deaths with each elapsing day has summoned researchers from all around the world to play their part in driving this SARS-CoV-2 pandemic to an end. As of now, multiple research teams are immersed in either scrutinizing various antiviral drugs for their efficacy or developing different types of vaccines that will be capable of providing long-term immunity against this deadly virus. The mini-review sheds light on the possible approaches that can be undertaken to curb the COVID-19 spread. Possible strategies comprise viral vector-based, nucleic acid-based, protein-based, inactivated and weakened virus vaccines; COVID-19 vaccine being developed by deploying Hyleukin-7 technology; plant-based chimeric protein and subunit vaccines; humanized nano-bodies and human antibodies; intravenous immunoglobulin (IVIG) infusion therapy; inhibitors for ACE-2, Angiotensin 1 receptor (AT1R), complement system, viral proteins, host cell protease and endocytosis; shield immunity; IL-6R, NKG2A and hACE2-SARS-CoV-2-RBD interaction blocking monoclonal antibodies; SARS-CoV RdRp-based drugs, traditional Chinese medicine, repositioned and anti-viral drugs. These vaccines and drugs are currently being screened in the clinical trials as several of them have manifested positive results, hence increasing the probability of becoming one of the potential treatments for this disease.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , COVID-19 Vaccines/pharmacology , COVID-19/prevention & control , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antibodies, Monoclonal/pharmacology , Clinical Trials as Topic , Drug Repositioning , Humans , Infectious bronchitis virus/immunology , Mesenchymal Stem Cell Transplantation/methods , RNA, Messenger/immunology , Recombinant Proteins/genetics , Single-Domain Antibodies/pharmacology , Vaccines, Attenuated/pharmacology , Vaccines, Subunit/pharmacology , Vaccines, Synthetic/pharmacology
19.
Nat Commun ; 11(1): 4528, 2020 09 10.
Article in English | MEDLINE | ID: covidwho-759594

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreads worldwide and leads to an unprecedented medical burden and lives lost. Neutralizing antibodies provide efficient blockade for viral infection and are a promising category of biological therapies. Here, using SARS-CoV-2 spike receptor-binding domain (RBD) as a bait, we generate a panel of humanized single domain antibodies (sdAbs) from a synthetic library. These sdAbs reveal binding kinetics with the equilibrium dissociation constant (KD) of 0.99-35.5 nM. The monomeric sdAbs show half maximal neutralization concentration (EC50) of 0.0009-0.07 µg/mL and 0.13-0.51 µg/mL against SARS-CoV-2 pseudotypes, and authentic SARS-CoV-2, respectively. Competitive ligand-binding experiments suggest that the sdAbs either completely block or significantly inhibit the association between SARS-CoV-2 RBD and viral entry receptor ACE2. Fusion of the human IgG1 Fc to sdAbs improve their neutralization activity by up to ten times. These results support neutralizing sdAbs as a potential alternative for antiviral therapies.


Subject(s)
Antibodies, Neutralizing/immunology , Coronavirus Infections/virology , Pneumonia, Viral/virology , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/pharmacology , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/drug therapy , HEK293 Cells , Humans , Immunoglobulin G , Models, Molecular , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/drug therapy , Protein Binding , Receptors, Virus/immunology , Single-Domain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
20.
Nat Commun ; 11(1): 4420, 2020 09 04.
Article in English | MEDLINE | ID: covidwho-744371

ABSTRACT

SARS-CoV-2 enters host cells through an interaction between the spike glycoprotein and the angiotensin converting enzyme 2 (ACE2) receptor. Directly preventing this interaction presents an attractive possibility for suppressing SARS-CoV-2 replication. Here, we report the isolation and characterization of an alpaca-derived single domain antibody fragment, Ty1, that specifically targets the receptor binding domain (RBD) of the SARS-CoV-2 spike, directly preventing ACE2 engagement. Ty1 binds the RBD with high affinity, occluding ACE2. A cryo-electron microscopy structure of the bound complex at 2.9 Å resolution reveals that Ty1 binds to an epitope on the RBD accessible in both the 'up' and 'down' conformations, sterically hindering RBD-ACE2 binding. While fusion to an Fc domain renders Ty1 extremely potent, Ty1 neutralizes SARS-CoV-2 spike pseudovirus as a 12.8 kDa nanobody, which can be expressed in high quantities in bacteria, presenting opportunities for manufacturing at scale. Ty1 is therefore an excellent candidate as an intervention against COVID-19.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/pharmacology , Betacoronavirus/drug effects , Camelids, New World/immunology , Coronavirus Infections/drug therapy , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/drug therapy , Single-Domain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Amino Acid Sequence , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Betacoronavirus/immunology , Betacoronavirus/metabolism , Binding Sites , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/virology , Cryoelectron Microscopy , Epitopes/immunology , Epitopes/metabolism , HEK293 Cells , Humans , Male , Models, Molecular , Pandemics , Peptidyl-Dipeptidase A/chemistry , Pneumonia, Viral/virology , Protein Binding , SARS-CoV-2 , Single-Domain Antibodies/immunology , Single-Domain Antibodies/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL